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On the Reduction of the Number of Spurious
Modes in the Vectorial Finite-Element

Solution of Three-Dimensional
Cavities and Waveguides

A. KONRAD, SENIOR MEMBER, IEEE

.&tract —A novel approach to the solution of three-dimensional micro-

wave cavity and wavegnide problems by finite elements reduces the number

of spurious, nonphysical modes. Solutions are obtained in terms of the field

vector H. Three-dimensional vector boundary conditions are implemented

in a way that allows arbitrarily-shaped curved boundaries to be modeled.

The formulation is based on a subparametric finite element with 27

interpolation nodes.

I. INTRODUCTION

o

NE-COMPONENT vector formulations have been

successful in the solution of two-dimensional wave-

guides [11] and axisymmetric cavities [2] with an arbitrary

cross section. However, when two or more vector compo-

nents are involved, the spectrum of eigensolutions contains

a large number of spurious, nonphysical modes [3], [4]. The

spurious modes occur regardless what combination of vec-

tor components are involved (e.g., longitudinal E and H

vector components [5]–[7], three H vector components [8],

etc.), or whether the finite-difference [9] or finite-element

methods [10] are employed.

Three-dimensional multicomponent vector formulations

are similarly plagued by the occurrence of spurious modes,

though this is not always reported [11]. Explanations for

the appearance of spurious modes and suggested methods

to eliminate the nonphysical solutions are a recurring theme

in technical papers on numerical methods for the analysis

of microwave devices [3], [4], [6]–[10], [13]. Claims that

spurious modes can be eliminated by adding a penalty

term to a functional are clearly unacceptable since no

reduction occurs in the size of the matrix eigenvalue prob-

lem [13]. What happens is that the nonphysical modes are

pushed toward higher frequencies and therefore do not

show up among the first few physically meaningful modes.

In most three-dimensional methods previously pub-

lished, the boundary conditions are implemented such that

they impose severe restrictions on the cavity shapes that

can be analyzed [10] –[12]. Three-dimensional finite-ele-

ment models are constructed so that boundary conditions

can be effortlessly applied. This usually means that the
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boundary surfaces must be aligned with the Cartesian

coordinate planes. The method presented here offers the

opportunity to break away from this restriction on cavity

shape and orientation. At the same time, since the new

approach treats principal vector boundary conditions as

constraints, it has the beneficial effect of truly eliminating

some of the nonphysical solutions.

II. VARIATIONAL FORMULATION

The approach described in this paper reduces the size of

the matrix eigenvalue problem tid thus a great number,

though not all, of the spurious solutions are indeed

eliminated. Consider the vector Hehnholtz’s equation given

by

divigrad H+k2pH=0 (1)
E

where H is the magnetic field vector, k is the wavenumber,

c is permittivity, and p is permeability.

An associated functional can be written as

}
F(h) = +j~@ dh12–k2ph2 dl’~ gra

—
#( }

~hgradh–hx ~curlfi .ndS (2)

where h is the trial function for H and n denotes the

outward normal unit vector to the boundary surface.

Wherever h appears as a scalar in (2), a summation over

each component should be understood.

The above variational formulation should be compared

with that based on the curlcurl equation, which automati-

cally couples the vector components without need for a

surface integral term in the associated functional [4].

III. BOUNDARY CONDITIONS

The natural boundary condition of (2) is given by

1
nX–curlh=O. (3)

e

This condition is equivalent to normal E field at perfect

electric-conductor boundaries. Unfortunately, this does not
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Fig. 1. (a) Stereoscopic image of one quadrant of a rectangular cavity of

dimensions 2 X 3 X 1 as modeled by a single twenty-seven-noded ele-
ment. (b) Stereoscopic image of the first mode of the rectangular cavity
of Fig. l(a) showing the magnetic-field vector at the interpolation nodes.

guarantee that the magnetic-field vector components will

satisfy the other electromagnetic boundary condition,

namely

n.h=O. (4)

The new method employs (4) as a principal boundary

condition on the same perfect electric conductor boundary

where the natural boundary condition (3) is satisfied. Both

natural and principal boundary conditions contribute to

the coupling of the three components of h.
In most practical three-dimensional cavity and wave-

guide problems, symmetry can be exploited to reduce the

matrix size. Symmetry planes in electromagnetic act like

perfect magnetic-conductor boundaries where h must be

normal to the surface. This can also be expressed as a

principal boundary condition given by

nXh=O. (5)

In addition, the homogeneous Neumann boundary condi-

tion

n~gradh=O (6)

is valid for symmetry planes. It is implemented as another

natural boundary condition by neglecting the surface in-

tegral term from (2).

IV. FINITE-ELEMENT METHOD

Conditions (4) and (5) imply that the components of h
are not linearly independent. Without (4) and (5), a finite-

element solution based on (2) would yield many spurious,

nonphysical solutions. Principal boundary conditions are
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Fig. 2. (a) Stereoscopic image of one quadrant of a circular cylindrical

cavitv of unit radius as modeled by one finite element. (b) Stereoscopic
imag~ of the magnetic-field distribution of the dominant mode in ~he
cylindrical cavity of Fig. 2(a).

applied after functional discretization and minimization

have been performed. The result is a reduction in the size

of the global coefficient matrices and, hence, the elimina-

tion of many nonphysical modes from the spectrum. The

algorithmic implementation is based on the concept of

rectangular finite-element connection matrices.

Each unknown vector component is approximated by 27

Lagrange interpolation polynomials. The shape of the ele-

ment is described by a different set of 26 interpolation

polynomials associated with the nodes at the surface of the

element. The Jacobian matrix of transformation between

local and global coordinates is used to evaluate the global

derivatives appearing in (2) in terms of the local deriva-

tives. A 27-point Gaussian quadrature formula is employed

for volume integration, and a 9-point formula is used for

surf ace integration.

V. EXAMPLES

Fig. l(a) shows the stereoscopic image of one quadrant

of a rectangular cavity of dimensions 2 X 3 X 1 as modeled

by a single element. Fig. l(b) shows the stereoscopic image

of the first resonant mode. The computed wavenumber of

1.89495 compares very well (0.37 percent error) with the

analytical solution, of 1.88786.

Ordinarily, a three-component vector solution using 27

finite-element nodes yields a 81x 81 matrix eigenvalue

problem with the majority of the 81 eigensolutions being

nonphysical. The application of (4) and (5) reduces the

matrix size to 28, thereby eliminating 53 spurious solutions.
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Fig. 3. (a) Stereoscopic image of one octant of a sphericaf cavity of unit

radius as modeled by eight twenty-seven-noded elements. (b) Stereo-

scopic image of the magnetic-field distribution of the lowest order mode
in the spherical cavity of Fig. 3(a).

Fig. 2(a) shows one quadrant of a circular cylindrical

cavity of unit height and radius modeled by one finite

element. Fig. 2(b) shows the 3D stereoscopic picture of the

dominant mode. The computed wavenumber is 2.47181,

the analytical solution is 2.40482. The 2.78-percent error is

reasonable considering that the finite-element model con-

sists of just one extremely distorted brick element. The

matrix size for this problem was 31.

Fig. 3(a) shows one octant of a spherical cavity of unit

radius, modeled by eight elements (125 interpolation nodes).

Fig. 3(b) shows the H-field distribution of the dominant

mode. The finite-element solution for the wavenumber is

2.80584, a very good approximation (0.27-percent error) to

the analytical solution (2.79839). The matrix size for this

problem would be 375 if the principal boundary conditions

were not enforced. The actual matrix size was 220.

VI. CONCLUSIONS

Comparing the present method with the one based on

the curlcurl equation, one should notice that the approach

for axisymmetric cavities descfibed in [4] incorporates the

natural boundary condition (3) but not the principal

boundary condition (4). Without the principal boundary

condition (4), the two formulations are mathematically

equivalent and yield both the physically meaningful as well

as a great number of spurious solutions. The present for-

mulation yields the same physically meaningful solutions,

plus a series of spurious solutions. However, since the

matrix size is smaller, the number of spurious solutions is

less. The authors of [4] have also noticed that by enforcing

the principal boundary condition (4) “some spurious solu-

tion eigenvalues are indeed eliminated, but not all.”

The results obtained with the one-element models are

testimony to the versatility of the twenty-seven-noded sub-

parametric element and the accuracy and correctness of the

present approach. The examples shown in Figs. l(b) and

2(b) were chosen because of the exceptional clarity of the

pictures. The spherical cavity example given in Fig. 3(b)

shows that principal boundary conditions on curved

surfaces can also be enforced in multi-element models.
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