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On the Reduction of the Number of Spurious
Modes in the Vectorial Finite-Element
Solution of Three-Dimensional
Cavities and Waveguides

A. KONRAD, SENIOR MEMBER, IEEE

Abstract — A novel approach to the solution of three-dimensional micro-
wave cavity and waveguide problems by finite elements reduces the number
of spurious, nonphysical modes. Solutions are obtained in terms of the field
vector H. Three-dimensional vector boundary conditions are implemented
in a way that allows arbitrarily-shaped curved boundaries to be modeled.
The formulation is based on a subparametric finite element with 27
interpolation nodes.

1. INTRODUCTION

NE-COMPONENT vector formulations have been
successful in the solution of two-dimensional wave-
guides [11] and axisymmetric cavities [2] with an arbitrary
cross section. However, when two or more vector compo-
nents are involved, the spectrum of eigensolutions contains
a large number of spurious, nonphysical modes [3], [4]. The
spurious modes occur regardless what combination of vec-
tor components are involved (e.g., longitudinal £ and H
vector components [S]—[7], three H vector components [8],
etc.), or whether the finite-difference [9] or finite-element
methods [10] are employed. ’
Three-dimensional multicomponent vector formulations
are similarly plagued by the occurrence of spurious modes,
though this is not always reported [11]. Explanations for
the appearance of spurious modes and suggested methods
to eliminate the nonphysical solutions are a recurring theme
in technical papers on numerical methods for the analysis
of microwave devices [3], [4], [6]-[10], [13]. Claims that
spurious modes can be eliminated by adding a penalty
term to a functional are clearly unacceptable since no
reduction occurs in the size of the matrix eigenvalue prob-
lem [13]. What happens is that the nonphysical modes are
pushed toward higher frequencies and therefore do not
show up among the first few physically meaningful modes.
In most three-dimensional methods previously pub-
lished, the boundary conditions are implemented such that
they impose severe restrictions on the cavity shapes that
can be analyzed [10]-[12]. Three-dimensional finite-ele-
ment models are constructed so that boundary conditions
can be effortlessly applied. This usually means that the
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boundary surfaces must be aligned with the Cartesian
coordinate planes. The method presented here offers the
opportunity to break away from this restriction on cavity
shape and orientation. At the same time, since the new
approach treats principal vector boundary conditions as
constraints, it has the beneficial effect of truly eliminating
some of the nonphysical solutions.

II. VARIATIONAL FORMULATION

The approach described in this paper reduces the size of
the matrix eigenvalue problem and thus a great number,
though not all, of the spurious solutions are indeed
eliminated. Consider the vector Helmholtz’s equation given
by

1
div—grad H+ k*uH =0 (1)
€

where H is the magnetic field vector, k is the wavenumber,
€ is permittivity, and p is permeability.
An associated functional can be written as

1
F(h)=+ f/f{jgrad h)? - kzuhz} dv
1 1

—#{ :h grad h — h X ——curlh} -ndS (2)
€

where h is the trial function for H and n denotes the
outward normal unit vector to the boundary surface.
Wherever h appears as a scalar in (2), a summation over
each component should be understood.

The above variational formulation should be compared
with that based on the curlcurl equation, which automati-
cally couples the vector components without need for a
surface integral term in the associated functional [4].

III. BounpARY CONDITIONS
The natural boundary condition of (2) is given by

1
nX—curlh=0. (3)
e

This condition is equivalent to normal E field at perfect
electric-conductor boundaries. Unfortunately, this does not
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(b)

Fig. 1. (a) Stereoscopic image of one quadrant of a rectangular cavity of
dimensions 2X3X1 as modeled by a single twenty-seven-noded ele-
ment. (b) Stereoscopic image of the first mode of the rectangular cavity
of Fig. 1(a) showing the magnetic-field vector at the interpolation nodes.

guarantee that the magnetic-field vector components will
satisfy the other electromagnetic boundary condition,
namely ,

n-h=0. (4)

The new method employs (4) as a principal boundary
condition on the same perfect electric conductor boundary

where the natural boundary condition (3) is satisfied. Both °

natural and principal boundary conditions contribute to
the coupling of the three components of A.

In most practical three-dimensional cavity and wave-
guide problems, symmetry can be exploited to reduce the
matrix size. Symmetry planes in electromagnetics act like
perfect magnetic-conductor boundaries where h must be
normal to the surface. This can also be expressed as a
principal boundary condition given by

nXh=0.

(5)
In addition, the homogeneous Neumann boundary condi-
tion

n-gradh=0
is valid for symmetry planes. It is implemented as another

natural boundary condition by neglecting the surface in-
tegral term from (2).

IV. FINITE-ELEMENT METHOD

Conditions (4) and (5) imply that the components of k
are not linearly independent. Without (4) and (5), a finite-
element solution based on (2) would yield many spurious,
nonphysical solutions. Principal boundary conditions are

(6)

~(b)

Fig. 2. (a) Stereoscopic image of one quadrant of a circular cylindrical
cavity of unit radius as modeled by one finite element. (b) Stereoscopic
image -of thé magnetic-field distribution of the dominant mode in the
cylindrical cavity of Fig. 2(a). . ’

applied  after functional discretization and minimization
have been performed. The result is a reduction in the size
of the global coefficient matrices and, hence, the elimina-
tion of many nonphysical modes from the spectrum. The
algorithmic implementation is based on -the concept of
rectangular finite-element connection matrices.

Each unknown vector component is approximated by 27
Lagrange interpolation polynomials. The shape of the ele-
ment is described by a different set of 26 interpolation
polynomials associated with the nodes at the surface of the
element. The Jacobian matrix of transformation between
local and global coordinates is used to evaluate the global -
derivatives appearing in (2) in terms of the local deriva-
tives. A 27-point Gaussian quadrature formula is employed
for volume integration, and a 9-point formula is used for
surface integration.

V. EXAMPLES

Fig. 1(a) shows the stereoscopic image of one quadrant
of a rectangular cavity of dimensions 2X3X1 as modeled
by a single element. Fig. 1(b) shows the stereoscopic image.
of the first resonant mode. The computed wavenumber of
1.89495 compares very well (0.37 percent error) with the
analytical solution, of 1.88786. '

Ordinarily, a three-component vector solution using 27
finite-element nodes yields a. 81X 81 matrix eigenvalue
problem with the majority of the 81 eigensolutions being
nonphysical. The application of (4) and (5) reduces the
matrix size to 28, thereby eliminating 53 spurious solutions.
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Fig. 3. (a) Stereoscopic image of one octant of a spherical cavity of unit
radius as modeled by eight twenty-seven-noded elements. (b) Stereo-
scopic image of the magnetic-field distribution of the lowest order mode
in the spherical cavity of Fig. 3(a).

Fig. 2(a) shows one quadrant of a circular cylindrical
cavity of unit height and radius modeled by one finite
element. Fig. 2(b) shows the 3D stereoscopic picture of the
dominant mode. The computed wavenumber is 2.47181,
the analytical solution is 2.40482. The 2.78-percent error is
reasonable considering that the finite-element model con-
sists of just one extremely distorted brick element. The
matrix size for this problem was 31.

Fig. 3(a) shows one octant of a spherical cavity of unit
radius, modeled by eight elements (125 interpolation nodes).
Fig. 3(b) shows the H-field distribution of the dominant
mode. The finite-element solution for the wavenumber is
2.80584, a very good approximation (0.27-percent error) to
the analytical solution (2.79839). The matrix size for this
problem would be 375 if the principal boundary conditions
were not enforced. The actual matrix size was 220.

VI. CONCLUSIONS

Comparing the present method with the one based on
the curlcurl equation, one should notice that the approach
for axisymmetric cavities described in [4] incorporates the
natural boundary condition (3) but not the principal
boundary condition (4). Without the principal boundary
condition (4), the two formulations are mathematically
equivalent and yield both the physically meaningful as well
as a great number of spurious solutions. The present for-
mulation yields the same physically meaningful solutions,
plus a series of spurious solutions. However, since the
matrix size is smaller, the number of spurious solutions is
less. The authors of [4] have also noticed that by enforcing

the principal boundary condition (4) “some spurious solu-
tion eigenvalues are indeed eliminated, but not all.”

The results obtained with the one-element models are
testimony to the versatility of the twenty-seven-noded sub-
parametric element and the accuracy and correctness of the
present approach. The examples shown in Figs. 1(b) and
2(b) were chosen because of the exceptional clarity of the
pictures. The spherical cavity example given in Fig. 3(b)
shows that principal boundary conditions on . curved
surfaces can also be enforced in multi-element models.
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